ACST3006 Assignment Name: Edmond Hui Student number:45324271 Question 1 To obtain graph we first find the portfolio expected value E(Rp) and portfolio standard deviation σ p and the two formulas are: E(Rp) =w1E(R1)+w2E(R2 ) σRp=√ w12Var(R1)+w22Var(R2) +2w1w2Cov(R1,R2 ) And use these formula in cell C9 and D9 accordingly, then formulate the data from weighting -500% to 750%. Then graph the in the {E(Rp)-Var(Rp )} graph. For the capital allocation line (CAL), we use the formula: p∗¿ R ¿ ¿ −B CE¿ D σ p∗¿ ¿ E(Rp)=E(Rp z ) +¿ To compute the covariance matrix (V), A, B, C, D: V= (0.010.002 0.0020.0025 ) V−1 = (119.476191−95.238095 −95.238095476.190476 ) A=(0.0150.008)(119.476191−95.238095−95.238095476.190476)(0.015 0.008 ) =0.0344 B=(0.0150.008)(119.476191−95.238095−95.238095476.190476)(1 1) =3.40476
C=(11)(119.476191−95.238095−95.238095476.190476)(1 1 ) =404.7619 D=|0.03443.40476 3.40476404.47619 | =2.32159 Therefore to compute σp*and E(Rp* ): Now we know thatE(Rp z ) =0.004 which is the risk free rate, hence: p∗¿ R ¿ ¿ −A ¿ p∗¿ R ¿ ¿ B∙ E¿ E(Rp z ) =0.004=¿ p∗¿ R ¿ ¿ −0.0344 ¿ p∗¿ R ¿ ¿ 3.40476∙E¿ E(Rp z ) =0.004=¿ p∗¿ R ¿ ¿ E¿
p∗¿ R ¿ ¿ p∗¿ R ¿ ¿ p∗¿ R ¿ ¿ +A E¿ C ∙¿ Var¿ p∗¿ R ¿ ¿ Var¿ p∗¿ R ¿ ¿ Var¿ Rp∗¿=0.065346 σ ¿
Expert's Answer
Chat with our Experts
Want to contact us directly? No Problem. We are always here for you
Your future, our responsibilty submit your task on time.
Order NowGet Online
Assignment Help Services